Design of optimal profiles of electrical stimulation for restoring of the walking

2009 
We present a method for the synthesis of electrical stimulation profiles for assisting of the walking in hemiplegic individuals. The stimulation profiles are synthesized by combining the joint torques estimated from the simulation that optimizes the tracking errors with a constraint of the minimal coactivation of antagonist muscles and the recruitment of the muscles for the potential user. The predicted electrical stimulation profiles were compared with the EMG recordings of the prime movers of the leg joints. The conclusion is that synthesis of controls should rely on muscle activation profiles determined through simulation, in which the level of coactivation of antagonist muscles are preset to ensure stability of the joints and smooth movements. The example presented uses data from a healthy individual (model parameters), but the methodology is directly implantable for hemiplegic individual just by replacing the model parameters, the EMG and the trajectory of the nonparetic leg.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []