Improvement of Hole-patterned Electrode Liquid Crystal Lens by Coplanar Inner Ring Electrode

2019 
In this study, the electro-optical performance of coplanar inner floating ring (CIFR)–hole-patterned electrode (with 1 mm aperture size) liquid crystal (LC) lens (HPELCL) was examined. Various experimental conditions, such as driving frequencies and cell structures, affecting the performance of the proposed lenses were analyzed and discussed via an electric circuit model. The CIFR electrodes successfully reduced the applied voltages with low driving frequencies and provided a larger lens power than conventional HPELCL. The floating ring electrode generated an induced electric field to contribute to the original fringe electric field by the hole-patterned electrode. The combined electric field yielded additional LC reorientations to achieve the same lens performance with decreased electric voltages. The proposed LC lens exhibited easy fabrication, tunable focuses, free of disclination line, and low power consumption. The experimental results were illustrated with the electric circuit model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []