The nanomorphology of cell surfaces of adhered osteoblasts

2020 
Functionality of living cells is inherently linked to subunits with dimensions on the nanoscale. In case of osteoblasts the cell surface plays a particularly important role for adhesion and spreading which are crucial properties with regard to bone implants. Here we present a comprehensive characterization of the 3D nanomorphology of living as well as fixed osteoblastic cells using scanning ion conductance microscopy (SICM) which is a nanoprobing method largely avoiding forces. Dynamic ruffles are observed, manifesting themselves in characteristic membrane protrusions. They contribute to the overall roughness which we systematically study by introducing the relative 3D excess area as a function of projected adhesion area. A clear anticorrelation is found upon analysis of ~40 different cells on glass as well as on amine covered surfaces. At the rim of lamellipodia characteristic edge heights between 100 nm and ~300 nm are observed. Membrane fluctuation data show a frequency-dependent decay exponent in excess of -2 on living osteoblasts. We discuss the capability of apical membrane features and fluctuation dynamics in aiding assessment of adhesion properties on a single-cell basis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []