Odd–Parity Spin–Triplet Superconductivity in Centrosymmetric Antiferromagnetic Metals

2021 
We propose a route to achieve odd-parity spin-triplet (OPST) superconductivity in metallic collinear antiferromagnets with inversion symmetry. Owing to the existence of hidden antiunitary symmetry, which we call the effective time-reversal symmetry (eTRS), the Fermi surfaces of ordinary antiferromagnetic metals are generally spin degenerate, and spin-singlet pairing is favored. However, by introducing a local inversion symmetry breaking perturbation that also breaks the eTRS, we can lift the degeneracy to obtain spin-polarized Fermi surfaces. In the weak-coupling limit, the spin-polarized Fermi surfaces constrain the electrons to form spin-triplet Cooper pairs with odd parity. Interestingly, all the odd-parity superconducting ground states we obtained host nontrivial band topologies manifested as chiral topological superconductors, second-order topological superconductors, and nodal superconductors. We propose that double perovskite oxides with collinear antiferromagnetic or ferrimagnetic ordering, such as ${\mathrm{SrLaVMoO}}_{6}$, are promising candidate systems where our theoretical ideas can be applied to.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []