Hypoxic preconditioning: effect, mechanism and clinical implication (Part 1).

2014 
: Hypoxic preconditioning (HPC) refers to exposure of organisms, systems, organs, tissues or cells to moderate hypoxia/ischemia that is able to result in a resistance to subsequent severe hypoxia/ischemia in tissues and cells. The effects exerted by HPC are well documented. The original local in situ (LiHPC) is now broadened to remote ectopic organs-tissues (ReHPC) and extended crossly to cross pluripotential HPC(CpHPC) induced by a variety of stresses other than hypoxia/ischemia, including cancer, for example. We developed a unique animal model of repetitive autohypoxia in adult mice, and studied systematically on the effects and mechanisms of HPC on the model in our laboratory since the early 1960s. The tolerances to hypoxia and protection from injury increased significantly in this model. The adult mice behave like hypoxia-intolerant mammalian newborns and hypoxia-tolerant adult animals during their exposure to repetitive autohypoxia. The overall energy supply and demand decreased, the microorganization of the brain maintained and the spacial learning and memory ability improved but not impaired, the detrimental neurochemicals such as free radicals down-regulated and the beneficial neurochemicals such as adenosine(ADO) and antihypoxic gene(s)/factor(s) (AHGs/AHFs) up-regulated. Accordingly, we hypothesize that mechanisms for the tolerance/protective effects of HPC are fundamentally depending on energy saving and brain plasticity in particular. It is thought that these two major mechanisms are triggered by exposure to hypoxia/ischemia via oxygen sensing-transduction pathways and HIF-1 initiation cascades. We suggest that HPC is an intrinsic mechanism developed in biological evolution and is a novel potential strategy for fighting against hypoxia-ischemia and other stresses. Motivation of endogenous antihypoxic potential, activation of oxygen sensing--signal transduction systems and supplement of exogenous antihypoxic substances as well as development of HPC appliances and HPC medicines such as AHFs are encouraged based on our basic research on HPC. HPC may result in therapeutic augmentation of the endogenous cytoprotection in hypoxic-ischemic or suffering from other diseases' patients. Evolutionary consideration of HPC and clinical implications of HPC are both discussed to guide future research. The product of AHF is expected to be one of the most effective first aid medicines to rescue patients in critical condition. HPC is beginning to be used in surgery and is expected to be developed into a feasible adaptive medicine in the near future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []