Generating data analysis programs from statistical models: Position paper

2000 
Extracting information from data, often also called data analysis, is an important scientific task. Statistical approaches, which use methods from probability theory and numerical analysis, are well-founded but difficult to implement: the development of a statistical data analysis program for any given application is time-consuming and requires knowledge and experience in several areas. In this paper, we describe AUTOBAYES, a high-level generator system for data analysis programs from statistical models. A statistical model specifies the properties for each problem variable (i.e., observation or parameter) and its dependencies in the form of a probability distribution. It is thus a fully declarative problem description, similar in spirit to a set of differential equations. From this model, AUTOBAYES generates optimized and fully commented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Code is generated by schema-guided deductive synthesis. A schema consists of a code template and applicability constraints which are checked against the model during synthesis using theorem proving technology. AUTOBAYES augments schema-guided synthesis by symbolic-algebraic computation and can thus derive closed-form solutions for many problems. In this paper, we outline the AUTOBAYEs system, its theoretical foundations in Bayesian probability theory, and its application by means of a detailed example.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []