Analytic Optimization of a MERA network and its Relevance to Quantum Integrability and Wavelet

2016 
I present an example of how to analytically optimize a multiscale entanglement renormalization ansatz for a finite antiferromagnetic Heisenberg chain. For this purpose, a quantum-circuit representation is taken into account, and we construct the exactly entangled ground state so that a trivial IR state is modified sequentially by operating separated entangler layers (monodromy operators) at each scale. The circuit representation allows us to make a simple understanding of close relationship between the entanglement renormalization and quantum integrability. We find that the entangler should match with the $R$-matrix, not a simple unitary, and also find that the optimization leads to the mapping between the Bethe roots and the Daubechies wavelet coefficients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []