Near‐Infrared Ternary Tandem Solar Cells

2018 
: The paucity of near-infrared (NIR) organic materials with high absorption at long wavelengths, combined with large diffusion lengths and charge mobilities, is an impediment to progress in achieving high-efficiency organic tandem solar cells. Here a subcell is employed within a series tandem stack that comprises a solution-processed ternary blend of two NIR-absorbing nonfullerene acceptors and a polymer donor combined with a small-molecular-weight, short-wavelength fullerene-based subcell grown by vacuum thermal evaporation. The ternary cell achieves a power conversion efficiency of 12.6 ± 0.3% with a short-circuit current of 25.5 ± 0.3 mA cm-2 , an open-circuit voltage of 0.69 ± 0.01 V, and a fill factor of 0.71 ± 0.01 under 1 sun, AM 1.5G spectral illumination. The success of this device is a result of the nearly identical offset energies between the lowest unoccupied molecular orbitals (LUMOs) of the donors with the highest occupied molecular orbital (HOMO) of the acceptor, resulting in a high open-circuit voltage. A tandem structure with an antireflection coating combining these subcells demonstrates a power conversion efficiency of 15.4 ± 0.3%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    47
    Citations
    NaN
    KQI
    []