High‐performance thin film composite membranes with well‐defined poly(dimethylsiloxane)‐b‐poly(ethylene glycol) copolymer additives for CO2 separation

2015 
A series of well-defined diblock copolymers (BCPs) consisting of poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) were synthesized and blended with commercially available PEBAX® 2533 to form the active layer of thin-film composite (TFC) membranes, via spin-coating. BCPs with a PEG component ranging from 1 to 10 kDa and a PDMS component ranging from 1 to 10 kDa were synthesized by a facile condensation reaction of hydroxyl terminated PEG and carboxylic acid functionalized PDMS. The BCP/PEBAX® 2533 blends up to 50 wt % on cross-linked PDMS gutter layers were tested at 35 °C and 350 kPa. TFC membranes containing BCPs of 1 kDa PEG and 1–5 kDa PDMS produced optimal results with CO2 permeances of approximately 1000 GPU which is an increase up to 250% of the permeance of pure PEBAX® 2533 composite membranes, while maintaining a CO2/N2 selectivity of 21. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1500–1511
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    21
    Citations
    NaN
    KQI
    []