Enhanced magnon spin current using the bosonic Klein paradox

2021 
Efficient manipulation of magnons for information processing is a central topic in spintronics and magnonics. An outstanding challenge for long-distance spin transport with minimal dissipation is to overcome the relaxation of magnons and to amplify the spin current they carry. Here, we propose to amplify magnon currents based on the realization of the bosonic Klein paradox in magnetic nanostructures. This paradox involves the magnon's antiparticle, the antimagnon, of which the existence is usually precluded by magnetic instabilities as it is an excitation at negative energy. We show that, by appropriately tuning the effective dissipation through spin-orbit torques, both positive-energy states (magnons) and negative-energy states (antimagnons) are dynamically stabilized. As a result, we find that the reflection coefficient of incident magnons at an interface between two coupled magnets can become larger than one, thereby amplifying the reflected magnon current. Our findings can lead to magnon amplifier devices for spintronic applications. Furthermore, our findings yield a solid-state platform to study the relativistic behavior of bosonic particles, which is a challenge with fundamental particles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []