Glutamate Transporter GLT-1 Upregulation Attenuates Visceral Nociception and Hyperalgesia via Spinal Mechanisms Not Related to Anti-Inflammatory or Probiotic Effects

2011 
Visceral pain is the most common reason for physician visits in US. Glutamate is the major excitatory neurotransmitter and mediates visceral nociceptive neuro-transmission and hypersensitivity. Removal of extracellular glutamate is predominantly mediated by glial glutamate transporter-1 (GLT-1). The pharmacological approach to up-regulate GLT-1 by 1 week administration of ceftriaxone (CTX) has been successful to mitigate visceral nociception. The present study shows that intrathecal delivery of selective GLT-1 antagonist dihydrokainate reversed CTX-blunted visceral nociceptive response, suggesting a spinal site of action. The role of GLT-1 up-regulation in animal models of colitis was studied. CTX treatment reversed TNBS-induced visceral hypersensitivity. In addition, CTX treatment initiated one week after the onset of DSS-induced visceral inflammation also attenuated visceral hypersensitivity, revealing a potential therapeutic effect. Cephalothin, a cephalosporin antibiotic lacking GLT-1 induction activity, failed to attenuate visceral nociception. CTX-induced changes in fecal microbiota do not support a role of probiotic effects in mitigating visceral nociception/hypersensitivity. Finally, adeno-associated virus serotype 9-mediated GLT-1 over-expression was effective to mitigate visceromotor response to 60 mmHg colo-rectal distension. These studies indicate that GLT-1 over-expression is a novel and effective method to attenuate visceral nociception, and is deserving of further study as a translationally relevant approach to treat visceral pain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    33
    Citations
    NaN
    KQI
    []