Impact of different saturation encoding modes on object classification using a BP wavelet neural network
2014
Wavelet neural networks have been successfully applied to object classification due to their unique various advantages. The wavelet neural network used in this paper is a type of back-propagation algorithm-learning wavelet neural network. The log-sigmoid function and wavelet basis function satisfying the frame condition are employed as an activation function in the output and hidden layers, respectively, and the entropy error function is also used to accelerate the learning speed. The log-sigmoid function has two saturated values, 0 and 1, which are the value of the function at a point whose value changes slightly as the independent variable changes at a somewhat wide range. Using this property of the saturated values and simplifying the mathematical model of neural network classification, we may mathematically prove that using different saturated values to encode the modes can affect the training error, generalization ability, and anti-noise ability of the wavelet neural network, in turn resulting in dif...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
17
References
6
Citations
NaN
KQI