Interplay between Calcite, Amorphous Calcium Carbonate, and Intracrystalline Organics in Sea Urchin Skeletal Elements

2018 
Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are relatively well known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intracrystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test plates of the Paracentrotus lividus sea urchins. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique, and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 1.2 to 1.6 wt % organics, 10 wt % of anhydrous ACC and less than 0.2 wt % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intracrystalline organics at the molecular level. Molecular interacti...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    21
    Citations
    NaN
    KQI
    []