A semi-implicit low-regularity integrator for Navier-Stokes equations.

2021 
A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in time in order to preserve the energy-decay structure of NS equations. First-order convergence of the proposed method is established independent of the viscosity coefficient $\mu$, under weaker regularity conditions than other existing numerical methods, including the semi-implicit Euler method and classical exponential integrators. Numerical results show that the proposed method is more accurate than the semi-implicit Euler method in the viscous case $\mu=O(1)$, and more accurate than the classical exponential integrator in the inviscid case $\mu\rightarrow 0$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []