Hydrogen embrittlement susceptibility of microstructures formed in multipass weld metal for HT780 class steel
2008
The effect of reheating by following passes on the hydrogen embrittlement of MAG weld metal for HT780 class steels has been investigated by using specimens subjected to simulated thermal cycles. The hydrogen-charged specimens exhibited transgranular quasi-cleavage fracture and intergranular fracture along prior austenite grain boundaries on slow strain rate tensile (SSRT) tests, depending on the reheated temperature and charged hydrogen content. The reduction in elongation of hydrogen-charged specimens became more significant when intergranular fracture occurred. When specimens in as-welded state and precedently reheated at coarse grained HAZ temperature of 1,623 K were reheated at a tempering temperature of 873 K, significant amount of intergranular fracture occurred at charged hydrogen contents above 3 ppm in spite of the decrease in hardness. The specimen reheated at 1,173 K showed no intergranular fracture even after receiving the reheating at 873 K at a hydrogen content of 6 ppm, suggesting the strong influence of the prior austenite grain size on the hydrogen-induced intergranular embrittlement. The measurement of hydrogen content desorbed from the hydrogen-charged specimen at room temperature suggested that the intergranular fracture caused by the reheating at 873 K was associated with an increase in susceptibility to hydrogen embrittlement of the prior austenite grain boundary itself rather than a decrease in the amounts of trapping sites such as dislocation and retained austenite.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
6
Citations
NaN
KQI