Using Atomic Force Microscopy to Predict Tumor Specificity of ICAM1 Antibody-Directed Nanomedicines

2018 
Atomic force microscopy (AFM) is a powerful tool to detect in vitro antibody–antigen interactions. To date, however, AFM-measured antibody–antigen interactions have yet to be exploited to predict in vivo tumor specificity of antibody-directed nanomedicines. In this study, we have utilized AFM to directly measure the biomechanical interaction between live triple negative breast cancer (TNBC) cells and an antibody against ICAM1, a recently identified TNBC target. For the first time, we provide proof-of-principle evidence that in vitro TNBC cell-ICAM1 antibody binding force measured by AFM on live cells more precisely correlates with in vivo tumor accumulation and therapeutic efficacy of ICAM1 antibody-directed liposomes than ICAM1 gene and surface protein overexpression levels. These studies demonstrate that live cell-antibody binding force measurements may be used as a novel in vitro metric for predicting the in vivo tumor recognition of antibody-directed nanomedicines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    9
    Citations
    NaN
    KQI
    []