Potential of Organic Mercury-resistant Bacteria Isolated from Mercury Contaminated Sites for Organic Mercury Remediation

2019 
BACKGROUND AND OBJECTIVE: Efforts at organic mercury detoxification can be carried out using resistant bacteria that can live in an environment contaminated with the compound. This study aimed at isolating and identifying resistant bacteria from mercury-contaminated environments and analysing their ability to detoxify organic mercury. MATERIALS AND METHODS: Soil samples were obtained from 3 gold processing locations that make use of mercury in Tanoyan Village, Bolaang Mongondow district, North Sulawesi province. The identification was carried out on the mercury-resistant bacteria through morphological and molecular tests. Bacteria which were highly resistant to mercury were examined for their ability to detoxify phenyl mercury (organic mercury). RESULTS: The study showed that 8 mercury-resistant bacterial colonies could be isolated from the three soil samples. The bacteria were able to grow in LB broth containing 10 mg L-1 of phenyl mercury. Four isolates (AA, BB, CC and DD) were even able to grow in 40 mg L-1 of phenyl mercury. According to the identification tests, those bacteria were Pseudomonas sp. (AA, DD), Pseudomonas aeruginosa (BB) and Proteus mirabilis (CC). Testing of organic mercury against isolates of bacteria which are highly resistant to it in order to determine their detoxification capacity revealed that all four isolates could reduce levels of the compound in media, based on the results, starting from the highest was Pseudomonas sp. 74.99%, then Pseudomonas aeruginosa 60.23% and Proteus mirabilis 47.59% after 24 h of incubation. CONCLUSION: The study suggested that there are four bacteria that have potentials to remediate organic mercury contamination sites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []