Emerging molecular mechanisms in chemotherapy: Ca 2+ signaling at the mitochondria-associated endoplasmic reticulum membranes

2018 
Inter-organellar communication often takes the form of Ca2+ signals. These Ca2+ signals originate from the endoplasmic reticulum (ER) and regulate different cellular processes like metabolism, fertilization, migration, and cell fate. A prime target for Ca2+ signals are the mitochondria. ER–mitochondrial Ca2+ transfer is possible through the existence of mitochondria-associated ER membranes (MAMs), ER structures that are in the proximity of the mitochondria. This creates a micro-domain in which the Ca2+ concentrations are manifold higher than in the cytosol, allowing for rapid mitochondrial Ca2+ uptake. In the mitochondria, the Ca2+ signal is decoded differentially depending on its spatiotemporal characteristics. While Ca2+ oscillations stimulate metabolism and constitute pro-survival signaling, mitochondrial Ca2+ overload results in apoptosis. Many chemotherapeutics depend on efficient ER–mitochondrial Ca2+ signaling to exert their function. However, several oncogenes and tumor suppressors present in the MAMs can alter Ca2+ signaling in cancer cells, rendering chemotherapeutics ineffective. In this review, we will discuss recent studies that connect ER–mitochondrial Ca2+ transfer, tumor suppressors and oncogenes at the MAMs, and chemotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    191
    References
    63
    Citations
    NaN
    KQI
    []