An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies.

2021 
Conventional in vitro methods for biological evaluation of intra-arterial devices such as stents fail to accurately predict cytotoxicity and remodeling events. An ex vivo flow-tunable vascular bioreactor system (VesselBRx), comprising intra- and extra-luminal monitoring capabilities, addresses these limitations. VesselBRx mimics the in vivo physiological, hyperplastic, and cytocompatibility events of absorbable magnesium (Mg)-based stents in ex vivo stent-treated porcine and human coronary arteries, with in-situ and real-time monitoring of local stent degradation effects. Unlike conventional, static cell culture, the VesselBRx perfusion system eliminates unphysiologically high intracellular Mg2+ concentrations and localized O2 consumption resulting from stent degradation. Whereas static stented arteries exhibited only 20.1% cell viability and upregulated apoptosis, necrosis, metallic ion, and hypoxia-related gene signatures, stented arteries in VesselBRx showed almost identical cell viability to in vivo rabbit models (~94.0%). Hyperplastic intimal remodeling developed in unstented arteries subjected to low shear stress, but was inhibited by Mg-based stents in VesselBRx, similarly to in vivo. VesselBRx represents a critical advance from the current static culture standard of testing absorbable vascular implants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []