Exact solutions for the unsteady rotational flow of an Oldroyd-B fluid with fractional derivatives induced by a circular cylinder
2013
In this research article, the unsteady rotational flow of an Oldroyd-B fluid with fractional derivative model through an infinite circular cylinder is studied by means of the finite Hankel and Laplace transforms. The motion is produced by the cylinder, that after time t=0+, begins to rotate about its axis with an angular velocity Ωt p . The solutions that have been obtained, presented under series form in terms of the generalized G-functions, satisfy all imposed initial and boundary conditions. The corresponding solutions that have been obtained can be easily particularized to give the similar solutions for Maxwell and Second grade fluids with fractional derivatives and for ordinary fluids (Oldroyd-B, Maxwell, Second grade and Newtonian fluids) performing the same motion, are obtained as limiting cases of general solutions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
9
Citations
NaN
KQI