In-stream Escherichia Coli Modeling Using high-temporal-resolution data with deep learning and process-based models

2021 
Abstract. Contamination of surface waters through microbiological pollutants is a major concern to public health. Although long-term and high-frequency E. coli monitoring can help prevent diseases from fecal pathogenic microorganisms, this monitoring is time consuming and expensive. Process-driven models are an alternative method for determining fecal pathogenic microorganisms. However, process-based modeling still has limitations in improving the model accuracy because of the complex mechanistic relationships among hydrological and environmental variables. On the other hand, with the rise in data availability and computation power, the use of data-driven models is increasing. Therefore, in this study, we simulated the transport of Escherichia coli (E. coli) in a 0.6 km² tropical headwater catchment located in Lao PDR using a deep learning model and a process-based model. The deep learning model was built using the long short-term memory (LSTM) technique, whereas the process-based model was constructed using the Hydrological Simulation Program–FORTRAN (HSPF). First, we calibrated both models for surface as well as for subsurface flow. Then, we simulated the E. coli transport with 6 min time steps with both the HSPF and LSTM models. The LSTM provided accurate results for surface and subsurface flow, by showing 0.51 and 0.64 of Nash–Sutcliffe Efficiency (NSE), respectively, whereas the NSE values yielded by the HSPF were −0.7 and 0.59 for surface and subsurface flow. The simulated E. coli concentration from LSTM also improved, yielding an NSE of 0.35, whereas the HSPF showed an unacceptable performance, with an NSE value of −3.01. This is because of the limitation of HSPF in capturing the dynamics of E. coli with land-use change. The simulated E. coli concentration showed rise and drop patterns corresponding to annual changes in land use. This study shows the application of deep learning-based models as an efficient alternative to process-based models for E. coil fate and transport simulation at the catchment scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []