Ultra-Thin SnS2-Pt Nanocatalyst for Efficient Hydrogen Evolution Reaction.

2020 
Transition-metal dichalcogenides (TMDs) materials have attracted much attention for hydrogen evolution reaction (HER) as a new catalyst, but they still have challenges in poor stability and high reaction over-potential. In this study, ultra-thin SnS2 nanocatalysts were synthesized by simple hydrothermal method, and low load of Pt was added to form stable SnS2-Pt-3 (the content of platinum is 0.5 wt %). The synergistic effect between ultra-thin SnS2 rich in active sites and individual dispersed Pt nanoclusters can significantly reduce the reaction barrier and further accelerate HER reaction kinetics. Hence, SnS2-Pt-3 exhibits a low overpotential of 210 mV at the current density of 10 mA cm-2. It is worth noting that SnS2-Pt-3 has a small Tafel slope (126 mV dec-1) in 0.5 M H2SO4, as well as stability. This work provides a new option for the application of TMDs materials in efficient hydrogen evolution reaction. Moreover, this method can be easily extended to other catalysts with desired two-dimensional materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []