Small hollow nanostructures as a new morphology to improve stability of LiMn2O4 cathodes in Li-ion batteries

2021 
Spinel LiMn2O4is a promising cathode material for lithium-ion batteries. However, bulk LiMn2O4commonly suffers from capacity fading due to the dissolution of Mn into the electrolyte during cycling. Moreover, bulk LiMn2O4exhibits a low Li+diffusion coefficient that limits the volume available to Li+storage. Herein, we report the synthesis of small hollow porous LiMn2O4nanostructures with a mean size of 51 nm exhibiting exposed (111) planes, assembled by nanoparticles of about 6 nm in size. The morphological features of these nanostructures ensure a large contact area between the material and the electrolyte, shorten the pathways for Li+diffusion and provide effective accommodation of the volume change during cycling. Therefore, these hollow nanostructures exhibit improved discharge capacity retention (nearly 82% after 200 cycles) and a greater Li+diffusion coefficient (3.46 × 10-7cm s-1) compared with that of bulk LiMn2O4.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []