Self-assembly preparation of popcorn-like colloidal silica and its application on chemical mechanical polishing of zirconia ceramic

2020 
Abstract Traditional mobile phone backplane materials are difficult to meet the requirements of the 5G era, and zirconia ceramic is one of the most promising backplane materials. However, its precision machining is difficult due to the hard and brittle nature. In this work, a novel popcorn-like colloidal silica was prepared by the self-assembly growth of nanoparticles for chemical mechanical polishing of the yttria-stabilized tetragonal zirconia ceramic sheets. The surface of the popcorn-like colloidal silica particles has a noticeably uneven shape, and the particle size distribution is uniform. The chemical mechanical polishing results show that the material removal rate of the prepared popcorn-like colloidal silica is increased by about 50% compared with the spherical colloidal silica, and the surface morphology is also obtained improvement. In the process of chemical mechanical polishing, the particles form multi-point contact with the ceramic sheet, resulting in an increase in the coefficient of friction, which is beneficial to the tribochemical reaction. In addition, multi-point contact can distribute the load, make the indentation shallower, and help reduce mechanical scratches. In general, the expected results are expected to provide experimental basis for the optimization of the structure of chemical mechanical polishing abrasive particles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    3
    Citations
    NaN
    KQI
    []