Gel electrophoretic technique for separating crosslinked RNAs: Application to improved electron microscopic analysis of psoralen crosslinked 16 S ribosomal RNA☆
1982
Abstract We have developed a gel electrophoresis technique for separating crosslinked RNA molecules into a series of discrete fractions. The gel used is polyacrylamide made in formamide and low salt designed to denature the RNA during electrophoresis. The mobility depends upon the position of crosslinking within each molecule, as demonstrated by electron microscopy of RNA eluted from the gel. In general, molecules with large loops electrophorese more slowly than molecules with small loops or uncrosslinked molecules. We have used this technique to re-examine the psoralen crosslinking pattern of Escherichia coli 16 S ribosomal RNA in inactivated 30 S ribosomal subunits. To determine the correct orientation of each type of crosslink, we have covalently attached DNA restriction fragments to the RNA so that the polarity of the RNA in the microscope would be known. Our previous major conclusions are confirmed: the predominant long-distance crosslink detected by gel electrophoresis involves a residue close to the 3′ end and a residue approximately 600 nucleotides away: the formamide/polyacrylamide gel is able to separate two closely spaced 1100-nucleotide interactions beginning close to the 3′ end, which were reported as one interaction before: and an interaction joining the ends is detected as before. However, one low-frequency crosslinked interaction, between positions 950 and 1400, and possibly another low-frequency interaction, between positions 550 and 870, are determined to be in the opposite polarity to that described previously.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
21
References
39
Citations
NaN
KQI