Behavioral Modeling of Complex Magnetic Permeability With High-Order Debye Model and Equivalent Circuits

2020 
In this article, a systematic procedure to derive equivalent circuit networks accurately reproducing the frequency response of the input impedance of magnetic cores in a broad frequency range is presented. The proposed procedure foresees to represent the effective complex permeability spectra of a magnetic core (i.e., the permeability resulting from the superposition of intrinsic material properties and effects due to structural features of the core) by a high-order Debye series expansion, which is subsequently synthesized into suitable Foster and Cauer networks. Such networks can be implemented in any circuit simulator, and are particularly favorable for time-domain transient simulation since they can be easily combined with hysteresis models. Two nanocrystalline tape-wound cores and a commercial bulk current injection probe are used as test cases to prove the effectiveness of the proposed method both in terms of accuracy and ease of implementation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    1
    Citations
    NaN
    KQI
    []