Scrambling in the Quantum Lifshitz Model.
2018
We study signatures of chaos in the quantum Lifshitz model through out-of-time ordered correlators (OTOC) of current operators. This model is a free scalar field theory with dynamical critical exponent $z=2$. It describes the quantum phase transition in 2D systems, such as quantum dimer models, between a phase with an uniform ground state to another one with a spontaneously translation invariance. At the lowest temperatures the chaotic dynamics are dominated by a marginally irrelevant operator which induces a temperature dependent stiffness term. The numerical computations of OTOC exhibit a non-zero Lyapunov exponent (LE) in a wide range of temperatures and interaction strengths. The LE (in units of temperature) is a weakly temperature-dependent function; it vanishes at weak interaction and saturates for strong interaction. The Butterfly velocity increases monotonically with interaction strength in the studied region while remaining smaller than the interaction-induced velocity/stiffness.
Keywords:
- Correction
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI