Oceanic bubble population measurements using a buoy-deployed combination frequency technique

1998 
This paper presents the results of using a combination frequency acoustic technique to measure the near-surface bubble population in the open sea. The combination frequency technique monitors the appearance of sum-and-difference signals generated by the nonlinear interaction of two sound fields: one, a high-frequency signal, scatters geometrically from the bubble, and the other, of much lower frequency, is used to excite the bubble into resonant pulsation. The text details the calibration of the apparatus necessary to relate the measured heights of the sum-and-difference terms to actual numbers of bubbles and describes the experimental procedure for the collection of the oceanic data. In total, six trials were performed over a one-day period, each comprising ten "snapshots" of the local bubble population at ten discrete radii. This data was augmented with simultaneous video, slide, and dictaphone records of the state of the sea around the measurement position.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    50
    Citations
    NaN
    KQI
    []