All-optical noise spectroscopy of a solid-state spin
2021
Noise spectroscopy elucidates the fundamental noise sources in spin systems, which is essential to develop spin qubits with long coherence times for quantum information processing, communication, and sensing. But noise spectroscopy typically relies on microwave spin control to extract the noise spectrum, which becomes infeasible when high-frequency noise components are stronger than the available microwave power. Here, we demonstrate an alternative all-optical approach to perform noise spectroscopy. Our approach utilises coherent control using Raman rotations with controlled timings and phases to implement Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences. Analysing the spin dynamics under these sequences extracts the noise spectrum of a dense ensemble of nuclear spins interacting with a quantum dot, which has thus far only been modelled theoretically. While providing large spectral bandwidths of over 100 MHz, our Raman-based approach could serve as an important tool to study spin dynamics and decoherence mechanisms in a broad range of solid-state spin qubits.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
1
Citations
NaN
KQI