PolyphosphateAdsorption and Hydrolysis on AluminumOxides

2019 
The geochemical behaviors of phosphate-containing species at mineral–water interfaces are of fundamental importance for controlling phosphorus mobility, fate, and bioavailability. This study investigates the sorption and hydrolysis of polyphosphate (a group of important long-chained phosphate molecules) on aluminum oxides in the presence of divalent metal cations (Ca2+, Cu2+, Mg2+, Mn2+, and Zn2+) at pH 6–8. γ-Al2O3 with three particle sizes (5, 35, and 70 nm) was used as an analogue of natural aluminum oxides to investigate the particle size effect. All metal cations enhanced polyphosphate hydrolysis at different levels, with Ca2+ showing the most significant enhancement, and the difference in the enhancement might be due to the intrinsic affinity of metal cations to polyphosphate. In the presence of Ca2+, the hydrolysis rate decreased with increasing mineral particle size. Solid-state 31P nuclear magnetic resonance spectroscopy (NMR) revealed the main surface P species to be amorphous calcium phosphate ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    16
    Citations
    NaN
    KQI
    []