Mycoplasma infection of cultured cells induces oxidative stress and attenuates cellular base excision repair activity

2019 
Abstract Mycoplasma contamination is a major concern for in vitro cell culture models as its resistance to most antibiotics, which makes the prevention and treatment of infection challenging. Furthermore, numerous studies show that Mycoplasma infection alters a variety of cellular processes, in a wide range of cell lines. However, there is a lack of information pertaining to the effects of Mycoplasma infection on genomic stability. In this study, a dopaminergic neuronal cell line (BE-M17), a popular in vitro model for Parkinson’s disease, was used to evaluate the effect of Mycoplasma infection on genomic instability, and base excision repair (BER) activity, using single cell gel electrophoresis (the comet assay). The results showed that Mycoplasma infection induced oxidative stress in the absence of an inflammatory response, with markedly increased levels of DNA damage [strand breaks/alkali-labile sites (SB/ALS), and oxidised purines], compared to uninfected cells. The source of the oxidative stress may have been increased ROS generation, or attenuation of cellular antioxidant capacity (or a combination of both). Uninfected cells initially repaired SB/ALS more rapidly than infected cells, although SB/ALS were fully repaired in both uninfected and infected cells 2 h after H 2 O 2 challenge. However, while uninfected cells showed complete repair of oxidised purines within 24 h, for the infected cells, these were not fully repaired even after 30 h. In conclusion, this study showed that not only does Mycoplasma infection induce oxidative stress and DNA damage, but it also decreases the efficiency of the main pathway responsible for the repair of oxidatively damaged DNA i.e. BER. In this in vitro model, there is no mechanism for infection-induced inflammation, which could be a source of increased ROS production. Therefore, further studies are needed to evaluate how Mycoplasma infection causes oxidatively damaged DNA, and how it modulates cellular DNA repair.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    7
    Citations
    NaN
    KQI
    []