Efficient Removal of Metolachlor and Bacterial Community of Biofilm in Bioelectrochemical Reactors

2019 
The microbial fuel cell (MFC) provides an inexhaustible electron acceptor to generate current and enhance the degradation of organic compounds. In MFCs with metolachlor as the sole carbon source, the degradation efficiency accelerated by 98%, with 61–76% of enhancement for the degradates, ethane sulfonic acid and oxanilic acid, respectively. According to quantifying primary metabolites of deschloro and metolachlor-2-hydroxyas, dechlorination and alcoholization were deemed as antecedent steps of metolachlor bioelectrochemical degradation. The energy recovery was infeasible by sole addition of metolachlor (at 13 ± 4 °C from equivalent weight of 0.224 mg). In MFCs with metolachlor and sodium acetate as the concomitant carbon sources, the electricity generation recovered to a level comparable to the controls, instead of increasing the removal efficiency of metolachlor. These results suggest that a low-efficiently direct electron transfer occurred between electricigens and metolachlor degraders. The Illumina sequencing showed that species of Paracoccus and Aquamicrobium played a potential degradation effect, while Comamonas sp. replaced Geobacter sp. as the predominant electricigen after addition of metolachlor. This study demonstrates that MFCs could be used as a promising alternative for treatment of chloroacetanilide herbicide contaminated wastewaters by means of a rapidly established active bacterial community.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []