Testing a class of non-Kerr metrics with hot spots orbiting SgrA*

2015 
SgrA*, the supermassive black hole candidate at the Galactic Center, exhibits flares in the X-ray, NIR, and sub-mm bands that may be interpreted within a hot spot model. Light curves and images of hot spots orbiting a black hole are affected by a number of special and general relativistic effects, and they can be potentially used to check whether the object is a Kerr black hole of general relativity. However, in a previous study we have shown that the relativistic features are usually subdominant with respect to the background noise and the model-dependent properties of the hot spot, and eventually it is at most possible to estimate the frequency of the innermost stable circular orbit. In this case, tests of the Kerr metric are only possible in combination with other measurements. In the present work, we consider a class of non-Kerr spacetimes in which the hot spot orbit may be outside the equatorial plane. These metrics are difficult to constrain from the study of accretion disks and indeed current X-ray observations of stellar-mass and supermassive black hole candidates cannot put interesting bounds. Here we show that near future observations of SgrA* may do it. If the hot spot is sufficiently more » close to the massive object, the image affected by Doppler blueshift is brighter than the other one and this provides a specific observational signature in the hot spot's centroid track. We conclude that accurate astrometric observations of SgrA* with an instrument like GRAVITY should be able to test this class of metrics, except in the more unlikely case of a small viewing angle. « less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    15
    Citations
    NaN
    KQI
    []