Asymptotic behavior of the unique solution for a fractional Kirchhoff problem with singularity
2021
In this paper, we consider the following fractional Kirchhoff problem with singularity $ \left \{\begin{array}{lcl} \Big(1+ b\int_{\mathbb{R}^3}\int_{\mathbb{R}^3} \frac{|u(x)-u(y)|^2}{|x-y|^{3+2s}}\mathrm{d}x \mathrm{d}y \Big)(-\Delta)^s u+V(x)u = f(x)u^{-\gamma}, &&\quad x\in\mathbb{R}^3,\\ u>0,&&\quad x\in\mathbb{R}^3, \end{array}\right. $ where $ (-\Delta)^s $ is the fractional Laplacian with $ 0
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
0
Citations
NaN
KQI