In situ “artificial plasma” calibration of tokamak magnetic sensors

2013 
A unique in situ calibration technique has been used to spatially calibrate and characterize the extensive new magnetic diagnostic set and close-fitting conducting wall of the High Beta Tokamak-Extended Pulse (HBT-EP) experiment. A new set of 216 Mirnov coils has recently been installed inside the vacuum chamber of the device for high-resolution measurements of magnetohydrodynamic phenomena including the effects of eddy currents in the nearby conducting wall. The spatial positions of these sensors are calibrated by energizing several large in situ calibration coils in turn, and using measurements of the magnetic fields produced by the various coils to solve for each sensor's position. Since the calibration coils are built near the nominal location of the plasma current centroid, the technique is referred to as an “artificial plasma” calibration. The fitting procedure for the sensor positions is described, and results of the spatial calibration are compared with those based on metrology. The time response ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    6
    Citations
    NaN
    KQI
    []