The Effect of Music Listening on Running Performance and Rating of Perceived Exertion of College Students

2011 
Introduction In the past listening to music was relegated to traveling in automobiles, while in the home, while engaged in recreational activities and occasionally at work. Today, the portable music industry (e.g. cassettes, compact discs, and iPod/MP3 digital audio devices) has popularized music "on the go" and invaded just about every environment including training venues. These devices have made it easier for people to enjoy their music and create their own style of workouts with relative ease, regardless of the setting, and has transcended into a multi-million dollar industry (14). Similarly, the sports arena is an environment where music has flourished. Traditionally, music has been used to motivate and inspire people prior to an important event (e.g. pre-game of a critical contest) as well as when they engage in sports and training for competition. Thus, athletes and traditional exercisers alike have used music as an accompaniment to exercise to sustain motivation, resist mental and emotional fatigue, and potentially enhance their physical and athletic performance (10). Scientific inquiry has revealed three key ways in which music can 'influence' preparation and competitive performances through dissociation, arousal regulation, and synchronization (3, 4, 6, 8-10). More specifically, research indicates music to be particularly effective in distracting exercisers away from their perceived exertion. Conceptual Framework Conceptually the underlying framework of using motivational music in exercise and sport devised by Karageorghis et al. (7) indicated two main hypotheses regarding arousal regulation and fatigue dissociation. First, music can be used to alter emotional and physiological arousal and thus can act either as a stimulant or sedative prior to and during physical activity. Therefore, an athlete can use various music tempos as a 'psych-up' strategy in preparation for a competition or perhaps an aid to calming over anxiousness. Second, music diverts a performer's attention from sensations of fatigue during exercise. This diversionary technique, known as dissociation, lowers perceptions of effort. Effective dissociation can promote a positive mood state, thus turning the attention away from thoughts of physiological sensations of fatigue (7). Rated Perceived Exertion Noble and Robertson (13) define perceived exertion as the subjective intensity of effort, strain discomfort and/or the fatigue that is experienced during an exercise. Currently, the most consistent findings suggest that perceived exertion will rate in lower values when participants exercise to music (12, 13, 22, & 24). The research data compiled from over the past two decades has found music particularly effective in distracting exercisers away from their perceived exertion during physical activity. A study by Nethery, Harmer, and Taaffe (12) found that perceived exertion while exercising to music was lower than for other attentional distracters and for the no distraction condition. Furthermore, Thornby et al. (22) tested exercising participants in the presence of music, no music and noise. They discovered that participants reported a lower perceived exertion while exercising in the presence of music in comparison to the no music and noise conditions. These findings coupled with the popularity and substantial profits generated between the association of music and training (14) would seem to indicate a correlation between the use of music and performance. However, the effects of listening to music on performance and other physiological measures are less clear. Therefore, the purpose of this study was to investigate the effect listening to music has on running performance and rating of perceived exertion of college students. Methods Experimental Approach to the Problem Listening to music (music listening) was defined as the subject's self selection of music tracks and use of a personal digital audio player (e. …
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []