Designing isotropic composites reinforced by aligned transversely isotropic particles of spheroidal shape

2018 
Abstract The aim of this paper is to study the design of isotropic composites reinforced by aligned spheroidal particles made of a transversely isotropic material. The problem is investigated analytically using the framework of mean-field homogenization. Conditions of macroscopic isotropy of particle-reinforced composites are derived for the dilute and Mori–Tanaka's schemes. This leads to a system of three nonlinear equations linking seven material constants and two geometrical constants. A design tool is finally proposed, which permits to determine admissible particles achieving macroscopic isotropy for a given isotropic matrix behavior and a given particle aspect ratio. Correlations between transverse and longitudinal moduli of admissible particles are studied for various particle shapes. Finally, the design of particles is investigated for aluminum and steel matrix composites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []