Secondary Organic Aerosols from OH Oxidation of Cyclic Volatile Methyl Siloxanes as an Important Si Source in the Atmosphere

2021 
Abstract. Cyclic volatile methyl siloxanes (cVMS) are active ingredients in widely used consumer products, which can volatilize into the atmosphere, thus attracting much attention due to their potential environmental risks. While in the atmosphere the cVMS undergo oxidation yielding both gaseous and particulate products. The aerosol yields and compositions from the OH oxidation of four cVMS (D3-D6) were determined under low and high-NOx conditions in an oxidation flow reactor. The aerosol yields progressively increased from D3 to D6, consistent with the volatilities and molecule weights of these cVMS. NOx can restrict the formation of SOA, leading to lower SOA yields under high-NOx conditions than under low-NOx conditions, with a yield decrease between 0.05–0.30 depending on the cVMS. Ammonium sulfate seeds exhibited minor impacts on SOA yields under low-NOx conditions, but significantly increased the SOA yields in the oxidation of D3-D5 at short photochemical ages under high-NOx conditions. The mass spectra of the SOA showed a dependence of its chemical compositions on OH exposure. At high exposures, equivalent to photochemical ages of > 6 days in the atmosphere, D4-D6 SOA mainly consisted of CxHy and CxHyOzSin under low-NOx conditions, whereas they primarily contained NmOz, CxHy, CxHyO1, CxHyO>1 and CxHyOzSin under high-NOx conditions. Using the yield data from the present study and reported cVMS annual production, a global cVMS-derived SOA source strength is estimated to be 0.16 Tg yr−1, distributed over major urban centers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []