Study of the Thermal Stability and Mechanical Characteristics of MAX Phases of Ti-Al-C(N) System and their Solid Solutions

2014 
The DTA and TG study in air of Ti2Al (C1-xNx) and Ti3AlC2 synthesized under Ar 0.1 MPa pressure and densified in thermobaric conditions at 2 GPa, 1400 °C, for 1 h showed that the increase of the amount of TiC layers in Ti-Al-C MAX phases structures leads to the increase of their stability against oxidation: 321 MAX phase Ti3AlC2 are more stable than Ti2AlC and Ti2Al (C1-xNx) solid solutions both before and after thermobaric treatment. The oxide film formed on the surface of the highly dense (ρ=4.27 g/cm3, porosity 1 %) material based on nanolaminated MAX phase Ti3AlC2 (89 % Ti3AlC2, 6 % TiC, 5 % Al2O3) manufactured by hot pressing (at 30 MPa) made the material highly resistant in air at high temperatures: after 1000 hours of exposition at 600 °C it demonstrated a higher resistance to oxidation than chromium ferrite steels (Crofer GPU and JDA types). Due to the surface oxidation self-healing of defects took place. Besides, the Ti3AlC2 material demonstrated resistance against high-temperature creep and after being kept in H2 at 600 °C for 3h its bending strength reduced by 5 % only. At room temperature the Ti3AlC2 bulk exhibited microhardness Hμ = 4.6 GPa (at 5 N), hardness HV50 = 630 (at 50 N ) and HRA = 70 (at 600 N), Young modulus was 140 ± 29 GPa, bending strength =500 MPa, compression strength 700 MPa, and fracture toughness K1C=10.2 MPa·m0.5.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    4
    Citations
    NaN
    KQI
    []