Surface Climate Responses to Explosive Volcanic Eruptions Seen in Long European Temperature Records and Mid‐to‐High Latitude Tree‐Ring Density Around the Northern Hemisphere
2013
Explosive volcanic eruptions are known to have an impact on surface temperatures in the two to three years after the eruption, but our ability to determine the impact is impeded by the paucity of eruptions (3-5 large events each century). We examine the response to large eruptions in instrumental temperature records for the whole Northern Hemisphere (NH) and longer European records using superposed epoch analysis. Despite the limited number of eruptions we separate the volcanoes into two groups: tropical and mid-to-high northern latitude (>40°N). The clearest response is after tropical eruptions, where the NH land temperature average cools significantly in the summer months up to three years after the eruptions, although the timing of the response differs markedly from eruption to eruption. Extending the analysis to three European regions (Fennoscandia, Central England and Central Europe) with longer temperature records shows weakly significant summer cooling after tropical eruptions over Fennoscandia, but no discernible impacts in the other two regions. The Fennoscandian series also indicates slight warming in the first, second and fourth winters (but not the third) following the eruptions, but the significance level is not reached. The lack of statistical significance (in the regional series for both summer and winter) is principally due to the greater variability of the regional series compared to the NH land temperature average, with the small number of eruptions being a contributory factor. After higher latitude eruptions significant cooling is restricted to the late summer in the NH during the eruption year, with little of significance in the longer European regional series. We also assess longer records of tree-ring density from the mid-to-high latitude regions of the NH. This analysis further highlights the dearth of major eruptions (about 20 in the last 600 years) and the differences in the spatial patterns of cooling after the eruptions. The response in the NH average of the exactly-dated tree-ring density series, however, is of such a unique character, that extremely anomalous negative values can be used to determine when major eruptions occurred in the past, even though the location of the eruption remains unknown for some dates.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
46
Citations
NaN
KQI