Investigation on the Synthesis Process of Bromoisobutyryl Esterified Starch and Its Sizing Properties: Viscosity Stability, Adhesion and Film Properties

2019 
To confirm the suitable synthesis process parameters of preparing bromoisobutyryl esterified starch (BBES), the influences of the synthesis process parameters—amount of 2-bromoisobutyryl bromide (BIBB), amount of catalyst (DMAP), reaction temperature and reaction time—upon the degree of substitution (DS) were investigated. Then, to produce a positive effect on the properties of graft copolymers of BBES prepared in the near future, a series of BBES samples were successfully prepared, and their sizing properties, such as apparent viscosity and viscosity stability, adhesion, and film properties, were examined. The BBES granules were characterized by Fourier transform infra-red spectroscopy and scanning electron microscopy. The adhesion was examined by determining the bonding forces of the sized polylactic acid (PLA) and polyester roving. The film properties were investigated in terms of tensile strength, breaking elongation, degree of crystallinity, and cross-section analysis. The results showed that a suitable synthesis process of BBES was: reaction time of 24 h, reaction temperature of 40 °C, and 0.23 in the molar ratio of 4-dimethylaminopyridine to 2-bromoisobutyryl bromide. The bromoisobutyryl esterification played the important roles in the properties of the starch, such as paste stabilities of above 85% for satisfying the requirement in the stability for sizing, improvement of the adhesion to polylactic acid and polyester fibers, and reduction of film brittleness. With rising DS, bonding forces of BBES to the fibers increased and then decreased. BBES (DS = 0.016) had the highest force and breaking elongation of the film. Considering the experimental results, BBES (DS = 0.016) showed potential in the PLA and polyester sizing, and will not lead to a negative influence on the properties of graft copolymers of BBES.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    3
    Citations
    NaN
    KQI
    []