Meta-modeling methods for estimating ammonia volatilization from nitrogen fertilizer and manure applications

2019 
Abstract Accurate estimations of ammonia (NH 3 ) emissions due to nitrogen (N) fertilization are required to identify efficient mitigation techniques and improve agricultural practices. Process-based models such as Volt’Air can be used for this purpose because they incorporate the effects of several key factors influencing NH 3 volatilization at fine spatio-temporal resolutions. However, these models require a large number of input variables and their implementation on a large scale requires long computation times that may restrict their use by public environmental agencies. In this study, we assess the capabilities of various types of meta-models to emulate the complex process-based Volt’Air for estimating NH 3 emission rates from N fertilizer and manure applications. Meta-models were developed for three types of fertilizer (N solution, cattle farmyard manure, and pig slurry) for four major agricultural French regions (Bretagne, Champagne-Ardenne, Ile-de-France, and Rhone-Alpes) and at the national (France) scale. The meta-models were developed from 106,092 NH 3 emissions simulated by Volt’Air in France. Their performances were evaluated by cross-validation, and the meta-models providing the best approximation of the original model were selected. The results showed that random forest and ordinary linear regression models were more accurate than generalized additive models, partial least squares regressions, and least absolute shrinkage and selection operator regressions. Better approximations of Volt’Air simulations were obtained for cattle farmyard manure (3%  3 emission inventories at both regional and national scales. Our approach could be implemented to emulate other process-based models in other countries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    15
    Citations
    NaN
    KQI
    []