Field-induced intertwined orders in 3D Mott-Kitaev honeycomb $β$-Li2IrO3

2018 
Author(s): Ruiz, Alejandro; Frano, Alex; Breznay, Nicholas P; Kimchi, Itamar; Helm, Toni; Oswald, Iain; Chan, Julia Y; Birgeneau, RJ; Islam, Z; Analytis, James G | Abstract: Honeycomb iridates are thought to have strongly spin-anisotropic exchange interactions that could lead to an extraordinary state of matter known as the Kitaev quantum spin liquid. The realization of this state requires almost perfectly frustrated interactions between the magnetic Ir$^{4+}$ ions, but small imbalances in energy make other ordered states more favorable. Indeed, the closeness in energy of these ordered states is itself a signature of the intrinsic frustration in the system. In this work, we illustrate that small magnetic fields can be employed to drive the frustrated quantum magnet $\beta-$Li$_2$IrO$_3$,between different broken symmetry states, but without causing a true thermodynamic phase transition. This field-induced broken symmetry phase has all the signatures of a thermodynamic order parameter, but it is never truly formed in zero field. Rather, it is summoned when the scales of frustration are appropriately tipped, intertwined with other nearby quantum states.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []