Mef2d sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity.

2020 
The transcription factor, Mef2d, is important in the regulation of differentiation and adaptive responses in many cell types. Among T cells, Mef2d gains new functions in Foxp3+ T-regulatory (Treg) cells as a result of its interactions with the transcription factor, Foxp3, and its release from canonical partners, like histone/protein deacetylases. Though not necessary for the generation and maintenance of Tregs, Mef2d is required for the expression of IL-10, Ctla-4 and Icos, and for the acquisition of an effector Treg phenotype. At these loci, Mef2d acts both synergistically and additively to Foxp3, and down-stream of Blimp1. Mice with the conditional deletion in Tregs of the gene encoding Mef2d are unable to maintain long-term allograft survival despite costimulation blockade and have enhanced antitumor immunity in syngeneic models, but they display only minor evidence of autoimmunity when maintained under normal conditions. The role played by Mef2d in sustaining effector Foxp3+ Treg functions without abrogating their basal actions suggests its suitability for drug discovery efforts in cancer therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    7
    Citations
    NaN
    KQI
    []