Computational analysis of interlaminar fracture of laminated composites : Computational mechanics

1997 
The interlaminar fracture behavior of laminated composites has been investigated. Contact and friction along the crack surfaces is taken into account in the finite element modeling of the delamination crack growth. Mode I, mode II and mixed mode loading conditions at the crack tip have been analyzed. For the cracks with contact and friction along the crack surfaces the virtual crack closure integral method is used in order to calculate separated energy release rates. Computational modeling and analysis of cross-ply laminates in three-point bending has been performed. Contact elements were used in order to prevent the material interpenetration along the crack surfaces. Comparison of the results obtained with and without using contact elements has been carried out and significant differences between the correlated values of the energy release rates have been found. The influence of the coefficient of friction on the energy release rates was found to be significant for short delamination crack lengths but insignificant for long cracks. Numerical analyses of experimental data obtained for unidirectionally reinforced glass fibre composites by double cantilever beam tests and by end notched flexure tests have been carried out. For the double cantilever beam test geometric linear and nonlinear finite element analyses have been performed and critical energy release rates were calculated. For the end notched flexure test the contact problem has been solved taking into account that adjacent to the support contact and friction will occur. For the double cantilever beam test the critical energy release rates obtained by linear and nonlinear finite element solution has been compared with those from four different analytical data reduction methods (the area method, the Berry method, the modified beam analysis, the compliance method). For the end notched flexure test the critical energy release rates, calculated by the finite element analysis and taking into account contact and friction along the crack surfaces, have been compared with those obtained by conventional beam analysis.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    17
    Citations
    NaN
    KQI
    []