Cross-platform comparison of highly sensitive immunoassay technologies for cytokine markers: Platform performance in post-traumatic stress disorder and Parkinson’s disease

2020 
Abstract There is mounting evidence of systemic inflammation in post-traumatic stress disorder (PTSD) and Parkinson’s disease (PD), yet inconsistency and a lack of replicability in findings of putative biological markers have delayed progress in this space. Variability in performance between platforms may contribute to the lack of consensus in the biomarker literature, as has been seen for a number of psychiatric disorders, including PTSD. Thus, there is a need for high-performance, scalable, and validated platforms for the discovery and development of biomarkers of inflammation for use in drug development and as clinical diagnostics. To identify the best platform for use in future biomarker discovery efforts, we conducted a comprehensive cross-platform and cross-assay evaluation across five leading platform technologies. This initial assessment focused on four cytokines that have been implicated PTSD – interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. To assess platform performance and understand likely measurements in individuals with brain disorders, serum and plasma samples were obtained from individuals with PTSD (n = 13) or Parkinson’s Disease (n = 14) as well as healthy controls (n = 5). We compared platform performance across a number of common analytic parameters, including assay precision, sensitivity, frequency of endogenous analyte detection (FEAD), correlation between platforms, and parallelism in measurement of cytokines using a serial dilution series. The single molecule array (Simoa™) ultra-sensitive platform (Quanterix), MESO V-Plex (Mesoscale Discovery), and Luminex xMAP® (Myriad) were conducted by their respective vendors, while Luminex® and Quantikine® high-sensitivity ELISA assays were evaluated by R&D System’s Biomarker Testing Services. The assay with the highest sensitivity in detecting endogenous analytes across all analytes and clinical populations (i.e. the highest FEAD), was the Simoa™ platform. In contrast, more variable performance was observed for MESO V-plex, R&D Luminex® and Quantikine®, while Myriad’s Luminex xMAP® exhibited low FEAD across all analytes and samples. Simoa™ also demonstrated high precision in detecting endogenous cytokines, as reflected in
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []