On shock-induced heavy-fluid-layer evolution

2021 
Investigation on the shock-induced finite-thickness fluid-layer evolution is very desirable but remains a challenge because it not only involves both the Richtmyer–Meshkov instability (RMI) and the Rayleigh–Taylor instability (RTI), but also strongly depends on the waves reverberated inside the layer. We experimentally and theoretically examined the evolution of a shocked gas layers with diverse layer thicknesses and amplitude combinations are created to explore the interfacial instabilities of the layer. When the initial fluid layer is thin, the two interfaces of the layer coalesce at a late time. The present study is the first to report that except for the RMI induced by a shock wave on the two interfaces, the rarefaction waves (RW) inside the fluid layer induce the additional RTI and decompression effect on the first interface, and the compression waves (CW) inside the fluid layer cause the additional Rayleigh–Taylor stabilisation (RTS) and compression effect on the second interface. A general one-dimensional theory is established to describe the motions of the two interfaces. Linear and nonlinear models are successfully established by considering the interface-coupling effect on the RMI and the additional interfacial instabilities induced by these waves inside the heavy fluid layer. The established models predict well the perturbation growths on the two interfaces at all regimes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []