Interactions Between Ionic Pesticides and Model Systems for Soil Fractions

2011 
The extensive use of herbicides in agriculture and their potentially toxic effects have promoted studies investigating the physical, chemical and biological processes that determine the mobility, bioavailability and degradation of these compounds in soils (Blasioli et al., 2011). Knowledge of these processes will enable prediction of the transport and fate of herbicides in soils and aquatic systems, and thus enable measures to be taken to limit their environmental impact. Retention is considered the main cause of the deactivation of herbicides in soils, and is important from the point of view of inhibiting the toxic properties of herbicides and of restricting their transport into aquatic systems (Jones & Bryan, 1980). Although not unique, adsorption reactions (i.e. accumulation of chemical species at the solid-solution interface) are the main cause of the retention of organic contaminants in soils, and their extent will depend on the physicochemical properties of both the adsorbent (soil) and the adsorbate (herbicide). The chemical characteristics of organic compounds are largely responsible for their behaviour in soil, and the differences in adsorption of different herbicides in the same soil are attributed to their distinct chemical properties. Although herbicides are very diverse, two groups can be distinguished in order to interpret their interactions with soil components: those involving chemical forces and those involving physical forces. The first group comprises ionic or ionizable hydrophilic compounds, while the second group comprises non polar hydrophobic compounds. Bipyridinium cations, such as paraquat (1,1’–dimethyl–4,4’–bipyridinium ion), are the best known members of the ionizable herbicides as they have been extensively used in agriculture and are consequently widely distributed in soils and waters. Paraquat (PQ) is applied as a dichloride or dibromide salt, which when dissolved in water releases the organic cation PQ2+, which can be adsorbed on the soil surface, either by replacing inorganic cations or by an ionic interaction mechanism with negatively charged sites on the soil surface, in which the electrostatic effect will be determinant (Narine & Guy, 1982). PQ adsorbs on humic substances and the degree of adsorption increases as the pH increases, as
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []