State-of-the-art Management Technologies of Dissolved Methane in Anaerobically-Treated Low-Strength Wastewaters: A Review Water Research

2021 
Abstract The recent advancement in low temperature anaerobic processes shows a great promise for realizing low-energy-cost, sustainable mainstream wastewater treatment. However, the considerable loss of the dissolved methane from anaerobically-treated low-strength wastewater significantly compromises the energy potential of the anaerobic processes and poses an environmental risk. In this review, the promises and challenges of existing and emerging technologies for dissolved methane management are examined: its removal, recovery, and on-site reuse. It begins by describing the working principles of gas-stripping and biological oxidation for methane removal, membrane contactors for methane recovery as an energy source, and on-site biological conversion of dissolved methane into electricity or value-added biochemicals as direct energy sources or energy-compensating substances. A comparative assessment of these technologies in the three categories is presented based on methane treating efficiency, energy-production potential, applicability, and scalability. Finally, current research needs and future perspectives are highlighted to advance the future development of an economically and technically sustainable methane-management technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    137
    References
    3
    Citations
    NaN
    KQI
    []