MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking

2002 
The purpose of this study was to evaluate the feasibility of the MRI-guided periradicular nerve root infiltration therapy. Sixty-seven nerve root infiltrations under MRI guidance were done for 61 patients suffering from lumbosacral radicular pain. Informed consent was acquired from all patients. A 0.23-T open-MRI scanner with interventional tools (Outlook Proview, Philips Medical Systems, MR Technologies, Finland) was used. A surface coil was used in all cases. Nerve root infiltration was performed with MRI-compatible 20-G needle (Chiba type MReye, Cook, Bloomington, Ind.; or Manan type, MD Tech, Florida). The evaluation of clinical outcome was achieved with 6 months of clinical follow-up and questionnaire. The effect of nerve root infiltration to the radicular pain was graded: 1=good to excellent, i.e., no pain or not disturbing pain allowing normal physical activity at 3 months from the procedure; 2=temporary, i.e., temporary relief of pain; 3=no relief of pain; and 4=worsening of pain. As an adjunct to MRI-guided positioning of the needle the correct needle localization by the nerve root was confirmed with saline injection to nerve root channel and single-shot fast spin echo (SSFSE) imaging. The MRI guidance allowed adequate needle positioning in all but 1 case (98.5%). This failure was caused by degeneration-induced changes in anatomy. Of patients, 51.5% had good to excellent effect with regard to radicular pain from the procedure, 22.7% had temporary relief, 21.2% had no effect, and in 4.5% the pain worsened. Our results show that MRI guidance is accurate and safe in performing nerve root infiltration at lumbosacral area. The results of radicular pain relief from nerve root infiltration are comparable to CT or fluoroscopy studies on the subject.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    38
    Citations
    NaN
    KQI
    []